

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 2905–2907

Synthesis of the C23–C32 fragment of spirangien

Michael Lorenz and Markus Kalesse*

Leibniz Universität Hannover, Institut für Organische Chemie, Schneiderberg 1B, D-30167 Hannover, Germany

Received 8 January 2007; revised 14 February 2007; accepted 16 February 2007 Available online 22 February 2007

Abstract—The synthesis of the C23–C32 fragment of spirangien A is reported using Evans' alkylation, Evans–Metternich aldol reaction and a substrate controlled stereoselective reduction.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Myxcobacteria are a valuable source for the isolation of structurally diverse biologically active natural products. Among the various strains isolated from *Sorangium cellulosum*, strain So ce90 produces important antibiotic and cytotoxic compounds such as epothilone. Spirangien A (1) and B (2) (Fig. 1) were isolated from the same strain¹ and have been tested for their biological activity. They show high activity against yeast and fungi (e.g., diameters of inhibition zones: *Pichia membranaefaciens* 24 mm, *Rhodotorula glutins* 19 mm, *Botrytis cinerea* 11 mm).¹ Additionally, high cytotoxicity of 1 against L929 mouse fibroblast cell line (IC₅₀ = 0.7 ng/

Figure 1. Spirangien A (1) and B (2).

Keywords: Evans alkylation; Substrate controlled stereoselective reduction; Evans–Metternich aldol.

* Corresponding author. Tel.: +49 0 511 762 4688; fax: +49 0 511 762 3011; e-mail addresses: michael.lorenz@oci.uni-hannover.de; Markus.Kalesse@oci.uni-hannover.de

0040-4039/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.02.081

mL⁻¹) and for **3** (IC₅₀ = 7 ng/mL⁻¹) (Fig. 2) has been observed.¹

Höfle and co-workers elucidated the structures of these two spirangiens A (1) and B (2) by NMR spectroscopy and mass spectrometry. They contain a highly functionalised spiroketal core structure, a side chain bearing a pentaene chromophore, a terminal carboxyl group and a total of 14 stereocentres. Through a cross metathesis reaction 1 was shortened to segment 3 of which X-ray

Figure 2. Retrosynthesis of 3.

analysis was utilised to determine the relative configuration.

Our retrosynthetic analysis dissects 3 at the spiroketal moiety to the open chain fragment 4 (Fig. 2). This in turn can be assembled by an aldol addition of ketone 6 to aldehyde 5 (Fig. 2). Here, we report the synthesis of the C23–C32 fragment 5 of spirangien.

The synthesis of aldehyde **5** (Scheme 1) starts with the commercially available tiglic acid (7) which is reduced² quantitatively to the corresponding alcohol with LiAlH₄ and subsequently transformed into bromide **8** using PBr₃ and pyridine for buffering the reaction mixture.³

Bromide 8 is then employed in an Evans' alkylation² using oxazolidinone 9. Deprotonation with NaHMDS as the base results in high yields and stereoselectivity to provide 10. Reductive cleavage of the Evans auxiliary with LiBH₄ in methanol⁴ followed by oxidation with DMP leads to aldehyde 12 (Scheme 1). Next, a *syn* selective Evans–Metternich aldol⁵ reaction with auxiliary 13, in the presence of freshly prepared Sn(OTf)₂ and NEt₃ yields the product in a diastereomeric ratio of 1.7:1 in favour of the desired product. A similar highly *syn* selective aldol addition using tin enolates was described by Evans and co-workers.⁵ TBS protection allowed separation of the diastereomers of ketone 14 cleanly (Scheme 1). This protocol generates 14 in a very good yield over three steps starting from DMP oxidation of 11.

The stereochemistry at C26 and C27 was confirmed by the synthesis of **14** via two *syn* selective Evans aldol reactions⁶ and TBS-protection of the free alcohol (Scheme 2) followed by comparison of optical rotations and NMR spectroscopy of a mixture of **14** which were synthesised through two different routes (Schemes 1 and 2). Nevertheless, the previous route via the Evans– Metternich aldol reaction was identified advantageous due to the poor yields in the two subsequent Evans aldol reactions.

A stereoselective substrate controlled reduction of ketone 14 at C25 can be achieved by using freshly pre-

Scheme 1. Synthesis of ketone 14.

Scheme 2. Alternative route to synthesise 14.

Scheme 3. Final steps for the synthesis of 17.

pared Zn(BH₄)₂ to furnish β -hydroxy ketone **18** in moderate yields (Scheme 4).⁷ The reducing reagent is ideally suited for a highly coordinating transition state. The two oxygens in this α -methyl- β -ketoamide are coordinated by Zn(BH₄)₂ such that the hydride attacks from the side opposite to the α -methyl group. This yields the desired *syn* product as described by Oishi, Evans and co-workers.⁸ TES-protection of the alcohol at C25 and reductive cleavage of the Evans auxiliary with LiBH₄ in methanol yield alcohol **17** (Scheme 3).

In order to additionally confirm the relative configuration of the diol at C25 and C27 TBS deprotection of **18** to produce diol **19** followed by acetonide formation utilising 2,2-dimethoxypropane⁹ results in the formation of **20** which shows indicative ¹³C NMR shifts for the methyl groups and the quaternary carbon at $\delta = 24.6$, 25.7 and 102.1 ppm, respectively (Scheme 4) confirming the expected 1,3-*anti* configuration of the diol.

In summary, we have achieved the efficient and selective synthesis of the C23–C32 segment of spirangien with an Evans–Metternich aldol and a substrate controlled

Scheme 4. Synthesis of acetal 20 to confirm the relative configuration at C25 and C27.

stereoselective reduction using $Zn(BH_4)_2$ in the key steps. The C23–C32 segment will serve as the pivotal substrate for completing the synthesis of this natural product and to provide analogues for detailed SAR studies.

2. Experimental

2.1. Acetal 20

To a solution of 19 (7.0 mg, 16.8 µmol) in CH₂Cl₂ (1 mL) 2,2-dimethoxypropane (55 µL, 425 µmol) and PPTS (0.5 mg, cat.) were added at 0 °C. The mixture was stirred for 16 h and satd aq NaHCO₃-solution was added. The aqueous layer was extracted with CH₂Cl₂ and the organic layer was washed with water, dried over MgSO₄ and concentrated in vacuo. Purification via flash chromatography (EtOAc/hexanes 1:5) yielded 20 as a colourless oil (7 mg, 16.2 μ mol, 96%). $R_{\rm f} = 0.22$ (EtOAc/hexanes 1:5); $[\alpha]_{589}^{20} + 39.6$ (c 0.70 CHCl₃); ¹H NMR (400 MHz, CD₃OD) $\delta = 7.26-7.38$ (m, 5H), 5.23 (q, J = 6.6 Hz, 1H), 4.71–4.77 (m, 1H), 4.28–4.35 (m, 2H), 4.03–4.09 (m, 1H), 3.66 (dd, J = 5.9, 5.6 Hz, 1H), 3.38 (dd, J = 10.3, 3.8 Hz, 1H), 3.18 (dd, J = 13.4, 3.2 Hz, 1H), 3.01 (dd, J = 13.5, 8.2 Hz, 1H), 2.58 (d, J = 13.2 Hz, 1H), 1.98–2.04 (m, 1H), 1.65–1.72 (m, 1H), 1.62 (d, J = 6.5 Hz, 3H), 1.59 (s, 3H), 1.49 (dd, J = 13.1, 10.9 Hz, 1H), 1.35 (s, 3H), 1.33 (s, 3H),1.29 (d, J = 6.9 Hz, 3H), 0.98 (d, J = 6.8 Hz, 3H), 0.74 (d, J = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CD₃OD) $\delta = 176.6, 155.4, 137.2, 135.9, 131.0, 130.1, 128.5,$ 121.3, 102.1, 77.7, 75.5, 67.9, 57.1, 45.2, 43.0, 38.6, 36.9, 32.3, 27.5, 25.7, 24.6, 15.9, 14.9, 13.8, 12.8; HRMS $(ESI, C_{27}H_{40}O_5N [M+H^+])$ calculated: 458.2906; found: 458.2901.

2.2. Alcohol 17

To a solution of the diprotected alcohol **16** (21 mg, 32.5 μ mol) in THF (1 mL) methanol (500 μ L) and LiBH₄ (2 M in THF, 49 μ L, 97.6 μ mol) were added dropwise at 0 °C. The mixture was warmed to rt and stirred for 2 h. The solution was then cooled to 0 °C and another portion of LiBH₄ (2 M in THF, 49 μ L, 97.6 μ mol) was added. After stirring for additional 2 h at rt aq NaOH-solution (2 M) was added. The organic layer was extracted with CH₂Cl₂, washed with satd aq

NaHCO₃-solution, brine, dried over MgSO₄ and concentrated in vacuo. Flash chromatography (EtOAc/hexanes 1:25) yielded alcohol **17** (13 mg, 27.5 µmol, 85%). $R_{\rm f} = 0.28$ (EtOAc/hexanes 1:25); $[\alpha]_{589}^{20} - 7.32$ (*c* 1.1 CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 5.18$ (q, J = 6.3 Hz, 1H), 3.77 (dd, J = 6.3, 0.5 Hz, 1H), 3.57 (t, J = 3.1 Hz, 1H), 3.44–3.52 (m, 2H), 2.11 (q, J = 9.1 Hz, 1H), 1.81–1.85 (m, 2H), 1.71–1.80 (m, 2H), 1.59 (s, 3H), 1.57 (s, 3H), 1.25–1.28 (m, 1H), 0.97 (t, J = 8.0 Hz, 9H), 0.91 (s, 9H), 0.89 (d, J = 3.8 Hz, 3H), 0.87 (d, J = 3.4 Hz, 3H), 0.78 (d, J = 6.1 Hz, 3H), 0.63 (q, J = 8.0 Hz, 6H), 0.07 (d, J = 3.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 134.3$, 119.9, 74.6, 67.1, 41.9, 41.2, 37.9, 36.9, 26.2, 18.6, 15.7, 15.5, 13.4, 12.0, 11.1, 7.1, 5.6, -3.5, -3.6; HRMS (ESI, C₂₆H₅₇O₃ [M+H⁺]) calculated: 473.3768; found: 473.3875.

References and notes

- Niggemann, J.; Bedorf, N.; Flörke, U.; Steinmetz, H.; Gerth, K.; Reichenbach, H.; Höfle, G. *Eur. J. Org. Chem.* 2005, 5013–5018.
- Clive, D. L. J.; Murthy, K. S. K.; Wee, A. G. H.; Prasad, J. S.; da Silva, G. V. J.; Majewski, M.; Anderson, P. C.; Evans, C. F.; Haugen, R. D.; Heerze, L. D.; Barrie, J. R. *J. Am. Chem. Soc.* **1990**, *112*, 3018–3028.
- 3. Lauchenauer, A.; Schinz, H. Helv. Chim. Acta 1951, 183, 1514–1523.
- Pilli, R. A.; Russowsky, D. J. Org. Chem. 1996, 61, 3187– 3190.
- (a) Evans, D. A.; Clark, J. S.; Metternich, R.; Novack, V. J.; Sheppard, G. S. *J. Am. Chem. Soc.* **1990**, *112*, 866–868; (b) Evans, D. A.; Kim, A.; Metternich, R.; Novack, V. J. *J. Am. Chem. Soc.* **1998**, *120*, 5921–5942; (c) Evans, D. A.; Weber, A. E. *J. Am. Chem. Soc.* **1986**, *108*, 6757–6761.
- Evans, D. A.; Palniaszek, R. P.; DeVries, K. M.; Guinn, D. E.; Mathre, D. J. J. Am. Chem. Soc. 1991, 113, 7613–7630.
- (a) Evans, D. A.; Trenkle, W. C.; Zhang, J.; Burch, J. D. Org. Lett. 2005, 7, 3335–3338; (b) Paquette, L. A. In Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons: NY, 1995; Vol. 8, 5536.
- (a) Oishi, T.; Nakata, T. Acc. Chem. Res. 1984, 17, 338–344;
 (b) Evans, D. A.; Ennis, M. D.; Le, T. J. Am. Chem. Soc. 1984, 106, 1154, and references cited therein.
- (a) Rychnovsky, S. D.; Rogers, B. N.; Richardson, T. I. Acc. Chem. Res. 1998, 31, 9; (b) Evans, D. A.; Rieger, D. L.; Gage, J. R. Tetrahedron Lett. 1990, 31, 7099–7100; (c) Patterson, I.; Temal-Laib, T. Org. Lett. 2002, 15, 1273– 2476.